Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

نویسندگان

  • Peter Ulvskov
  • Dionisio Soares Paiva
  • David Domozych
  • Jesper Harholt
چکیده

The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene tra...

متن کامل

Evolutionary Dynamics of Cryptophyte Plastid Genomes

Cryptophytes are an ecologically important group of largely photosynthetic unicellular eukaryotes. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin and the host cell retains four different genomes (host nuclear, mitochondrial, plastid, and red algal nucleomorph). Here, we report a comparative analysis of plastid ...

متن کامل

Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial...

متن کامل

Outsourcing the Nucleus: Nuclear Pore Complex Genes are no Longer Encoded in Nucleomorph Genomes

The nuclear pore complex (NPC) facilitates transport between nucleus and cytoplasm. The protein constituents of the NPC, termed nucleoporins (Nups), are conserved across a wide diversity of eukaryotes. In apparent exception to this, no nucleoporin genes have been identified in nucleomorph genomes. Nucleomorphs, nuclear remnants of once free-living eukaryotes, took up residence as secondary endo...

متن کامل

Contrasting Mitochondrial Genome Organizations and Sequence Affiliations among Green Algae: Potential Factors, Mechanisms, and Evolutionary Scenarios1

The three green algal mitochondrial genomes completely sequenced to date—those of Chlamydomonas reinhardtii Dangeard, Chlamydomonas eugametos Gerloff, and Prototheca wickerhamii Soneda & Tubaki—revealed very different mitochondrial genome organizations and sequence affiliations. The Chlamydomonas genomes resemble the ciliate/fungal/animal counterparts, and the Prototheca genome resembles land p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013